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The growth and collapse of a vapour bubble inside a microtube is studied both
experimentally and theoretically. The length of the bubble, and the velocity and
acceleration of its interface, are obtained from a high-speed image recording (typically
1.25 × 105 fps) for various energy inputs and two tube diameters. To understand
the underlying dynamics of the system, two theoretical models are compared with
experiment. A model based on a discontinuous time dependence of the vapour
pressure inside the bubble is at variance with the data. It proves necessary to account
in greater detail for the time dependence of the vapour pressure. A new model
is proposed for this purpose which includes heat transfer in addition to inertia and
viscous friction. Both the data and the model show that the vapour pressure decreases
with time continuously instead of abruptly. The length, velocity and acceleration from
the numerical simulations are found to be in good agreement with experimental data.
Both the experiments and simulations clearly indicate that thermal effects play an
important role throughout the whole growth and collapse process.

1. Introduction
The dynamics of a free bubble have been studied extensively (see, e.g. Plesset &

Prosperetti 1977; Brennen 1995; Brenner, Hilgenfeldt & Lohse 2002) due to their
relevance for a wide range of phenomena. The first studies devoted to bubbles
in confined geometries were motivated by the development of ink-jet printing
technology (Allen, Meyer & Knight 1985; Asai 1989, 1991). This early interest
has been subsequently sustained by the rapid development of microfluidics (see, e.g.
Mazouchi & Homsy 2000; Ajaev, Homsy & Morris 2002; Ajaev & Homsy 2006).
Other applications have focused on the actuation properties of rapidly growing and
collapsing bubbles. For example, the high liquid velocity induced by transient bubbles
has been used to provide high-Reynolds-number flow in microsystems (Ohl et al.
2006). Yuan & Prosperetti (1999) and Ory et al. (2000) have studied the dynamics of
highly transient vapour bubbles in a tube and have demonstrated a pumping effect
(Yin & Prosperetti 2005a, b; see also Jun & Kim 1996, 1998).

Here we study the growth and collapse of a vapour bubble inside a microtube both
experimentally and theoretically. In previous studies (Asai 1989; Yin & Prosperetti
2005a , b), the vapour bubble was created using a thin-film heater at the tube surface.
In the present work, the bubble is generated in the central region of a tube by focusing
a laser pulse. The experiments are conducted varying the tube diameter and length
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Figure 1. A sketch of the experimental setup.

and the laser energy. To increase heat absorption by the liquid, water mixed with dye
is used.

The early models (Ory et al. 2000; Yin, Prosperetti & Kim 2004; Yin & Prosperetti
2005a , b) of these processes assumed that the high vapour pressure in the bubble
caused by the initial heat pulse persisted only for a very short time and the subsequent
dynamics was mostly governed by inertial and viscous effects. We find that these
essentially mechanical models are inadequate to describe the observations and develop
a new model which incorporates thermal effects.

2. Experimental setup
A sketch of the experimental setup, similar to the one used in the earlier experiments

of Zwaan et al. (2007), is shown in figure 1. Two glass microtubes were used in the
experiments, one with an inner diameter D = 50 μm, outer diameter 80 μm and length
L= 27 mm, the other one with an inner diameter of 24.9 μm, outer diameter 80 μm
and length 25 mm. For all experiments the same mixture of water and red food dye
was used. The tubes were filled with the liquid, and both ends were covered by large
droplets of the same solution (diameter ∼5 mm) exposed to the atmosphere. The
bubble was created at the midpoint of the microtube by focusing a laser pulse of
a wavelength 532 nm (Nd:YAG laser, Solo PIV, New Wave, Fremont, CA, USA)
with a time duration of 6 ns by means of a 40× objective. The energy of the laser
varied from 27.6 to 49.3 μJ for the D = 50 μm tube, and from 27.6 to 56.3 μJ for
the D = 24.9 μm tube. For calibrating the energy, an energy meter (Gentec-eo XLE4)
was positioned above the tubes. The energy absorbed by the working fluid was
calibrated by measuring the difference of the reading of the meter with the empty
glass tube and the glass tube filled with the working fluid. For the D = 50 μm tube,
the absorbed energy varied from 6.5 to 11.6 μJ. The energy absorbed by the liquid in
the D =24.9 μm tube varied from 3.0 to 6.1 μJ.

A filter was used to block the reflected laser light to prevent damage to the
camera. The motion of the bubble was recorded by a high-speed camera with a
maximum frame rate of 106 fps (HPV-1, Shimadzu Corp., Japan). In the experiments,
1.25 × 105 fps proved sufficient. The inter-frame and exposure times are 8 and 4 μs,
respectively. The maximum uncertainty of the bubble size due to blurring on a single
frame is less than 5 % when the velocity of the interface is maximum. Illumination for
the camera was provided by a fibre lamp (Olympus ILP-1) emitting a light spectrum
part of which passed through the filter to the camera. A digital delay generator (Model



Growth and collapse of a vapour bubble in a microtube 7

t = 0 μs t = 16 μs t = 40 μs

t = 136 μs  t = 288 μs t = 392 μs

(c)(b)(a)

 (f) (e) (d)

Figure 2. Representative frames of the vapour bubble evolution inside the microtube with
an inner diameter 50 μm and length 27 mm; the absorbed laser energy is 11.6 μJ.

555, Berkeley Nucleonics Corp., CA, USA) was used to synchronize the camera and
the laser.

3. Experimental results
Some representative frames taken during the evolution of the vapour bubble in

the larger tube are shown in figure 2. The tube is initially full of liquid as shown
in figure 2(a). The vapour bubble appears rapidly at the midpoint of the tube after
the liquid has absorbed 11.6 μJ from the laser pulse. The bubble is initially a small
sphere (figure 2b), it expands spherically until it nearly occupies the whole diameter
of the tube, after which preferential growth in the axial direction begins (figure 2c).
The shape of the bubble changes approximately to that of a cylinder occupying the
majority of the cross-section of the tube (figure 2c–e). A very thin liquid film on the
tube wall, as expected from the no-slip condition on a hydrophilic surface, is barely
visible in these pictures and with insufficient detail for a quantitative study. The
appearance of the bubble during the expansion (figure 2c) and collapse (figure 2e)
is similar except for the final stage (figure 2f ), where it differs appreciably from
its shape at the moment of formation (figure 2b). The final shape is oblate and
the motion remains very nearly one-dimensional until the very end because surface
tension does not have the time to make the interface curved. Thus, the flow retains
its approximately one-dimensional nature due to its brief duration (Ory et al. 2000),
which makes a one-dimensional model a reasonable approximation.

By approximating the bubble as a cylinder, its length Lbubble along the axis of the
tube and its diameter W can be extracted from the high-speed movies. The volume
of the bubble is calculated as Vbubble = πW 2Lbubble/4. The bubble volume in this way
involves some error which is only appreciable in the first few frames. The estimated
errors for figures 2(b), 2(c) and 2(d ) are 25 %, 10 % and 4 %, respectively. Since the
system is symmetric with respect to the midpoint of the tube, we only consider half
of the bubble. From here on, the bubble length is defined as X = (1/2)Vbubble/(πD2/4).

The time evolution of the measured bubble length X for different energy levels
in the larger tube is plotted with open symbols in figure 3(a). In descending order,
the absorbed energy is 11.6, 10.4, 8.2 and 6.5 μJ. The maximum bubble size and its
duration increase with increasing energy. The overall trends of the X(t) curves for
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Figure 3. Time evolution of the bubble length X for different energy levels (a) in the tube
with D = 50 μm; in descending order E =11.6, 10.4, 8, 2 and 6.5 μJ; (b) in the tube with
D = 24.9 μm, for E = 6.1, 5.3, 4.8, 3.8 and 3.0 μJ. The open symbols are the experimental results
and the lines are the results of the thermal model. See text for detailed parameters for the
model.
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Figure 4. Velocity and acceleration of the interface versus time. (a) D =50 μm with
E =11.6 μJ, and (b) D = 24.9 μm with E = 5.3 μJ. The open symbols are the experimental
results and the lines the numerical results given by the thermal model.

different energy levels are quite similar. The vapour bubble expands quickly, and
shrinks more slowly after reaching its maximum size.

The contrast between growth and collapse is even sharper with the smaller tube.
The bubble length versus time for different energy levels for this case is shown with
open symbols in figure 3(b). More experimental runs were available with this tube
and each X(t) curve shown is the result of averaging three different experiments under
the same nominal conditions. Shot-to-shot reproducibility was good. In descending
order, the absorbed energy is 6.1, 5.3, 4.8, 3.8 and 3.0 μJ. Again, the maximum length
and the duration of the bubble increase with increasing energy and the overall trends
of the X(t) curves for different energy levels are quite similar. However, the collapse
of the bubble in this case proceeds much slower than its expansion. Unlike the larger
tube case, the collapse process lasts about 10 times longer than the expansion.

To fit the measured X(t), we used cubic splines from which the velocity and
acceleration of the liquid/vapour interface can be extracted. The time dependence of
the velocity in the larger tube is shown for E = 11.6 μJ by the circles in figure 4(a).
The velocity of the interface increases quickly to a maximum around 1 m s−1 at
t ∼ 40 μs, and then decreases continuously to a minimum value around −0.4 m s−1

when the bubble disappears. The time dependence of the velocity in the smaller tube,
for E = 5.3 μJ, is shown by the open diamonds in figure 4(b). The velocity of the
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Figure 5. Conceptual sketch used in the formulation of the thermal model.

interface increases to around 1 m s−1 at t ∼ 16 μs and then decreases continuously.
The maximum velocity in the smaller tube is reached earlier than in the larger tube
and the collapse velocity (0.2 m s−1) is lower than that in the larger tube (0.4 m s−1).
Since the very first instants of the bubble growth were too fast to be recorded, the
first data readings that could be taken correspond to a finite velocity.

The acceleration of the interface is also shown in figure 4(a). Here the squares are
for the larger tube with E = 11.6 μJ. The acceleration begins with a huge value around
55 000 m s−2, then immediately becomes negative down to around −10 000 m s−2, and
finally increases again to a very small value. The huge value at the beginning is
a remarkable feature which may be potentially useful in microfluidic systems. The
acceleration of the interface in the smaller tube, with E = 5.3 μJ, is shown by the
triangles in figure 4(b). It begins with a positive value around 20 000 m s−2, and
decreases rapidly to a negative value around −35 000 m s−2, after which it increases
quickly to a very small value. The stronger deceleration for the thinner tube reflects
the enhanced viscous forces on the small scale.

We now describe two simple theoretical models which are helpful to shed some
light on these observations.

4. Theoretical models
As remarked before, the approximate one-dimensional nature of the bubble

evolution suggests the possibility of using a simple one-dimensional model for its
behaviour which is sketched in figure 5. Here the left vertical line is the plane of
symmetry at the midpoint of the tube which coincides with the centre of the bubble.
We are interested in the motion of the right vapour–liquid interface located at X(t).
If the pressure at the other end of the liquid column is a constant p∞, the equation
of motion of the liquid column in the tube is, approximately (Yin et al. 2004),

�LρL

d2X

dt2
= pV (t) − p∞ − RdX

dt
. (4.1)

Here �L is the length of the liquid column, which we keep constant and equal to half
of the tube length given the smallness of the the bubble; pV is the vapour pressure in
the bubble and R represents on approximation the effect of viscous losses due to the
wall. By approximating the flow in the tube as quasi-steady fully developed Poiseuille
flow, we model this term as R = 32μ�L/D2, in which μ is the liquid viscosity. This
approximation is justified if the viscous diffusion length is comparable to, or larger
than, the tube radius D/2, i.e. 2

√
ντb/D � 1. With a bubble duration τb � 400 μs and

D = 50 μm, this ratio is about 0.8. This value does not fully support the approximation,
which will therefore tend to underestimate somewhat the true viscous loss. However
the error may be expected to be moderate, which is supported by the results that will
be shown later. Since the pressure inside the bubble is essentially uniform there is no
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Figure 6. Comparison of the bubble length X(t) versus time as measured and predicted
by the models for the cases (a) D = 50 μm and (b) D = 24.9 μm. The open symbols are the
experimental results; the dashed lines are the predictions of the step-function pressure model
and the solid lines those of the thermal model.

pressure gradient to drive the flow in the film so that viscous dissipation in it can be
neglected.

4.1. The step-function pressure model

In the past work (see, e.g. Ory et al. 2000) the dynamics of the bubble was modelled
including inertia and viscosity but neglecting thermal effects. The pressure inside the
bubble was taken equal to the vapour pressure of the liquid at the initial undisturbed
temperature, except for a short interval 0 � t <�t during which it was given a
large value p∞ + �p. We can now compare the predictions of this model with our
data.

This simple model has two free parameters, �p and the duration of the overpressure
�t . As suggested by the data to be shown later, we take the initial high pressure
pV =p∞ + �p = 106 Pa and fit �t so as to match approximately the observed
maximum elongation of the bubbles in figure 3. For the larger tube (D = 50 μm)
and E = 11.6 μJ we take �t = 22 μs while, for the smaller tube (D =24.9 μm) with
E = 5.3 μJ, we take �t = 25 μs. For t >�t the pressure inside the bubble falls to
pV =pV (25◦C) =3.2 × 103 Pa. The initial bubble length for both cases was selected
from experiment, X(0) = 10 μm for D =50 μm and X(0) = 20 μm for D =24.9 μm. The
initial velocity for both cases was taken as 0.

The results of this step-function pressure model for the two cases are shown
with the dashed lines in figure 6. The open symbols are the experimental data (a)
D =50 μm with E = 11.6 μJ and (b) D = 24.9 μm with E = 5.3 μJ. Although in a very
general way some aspects of the observed bubble dynamics are reproduced, a major
difference between this model and our data lies in the much faster collapse than
in the experiment. This aspect cannot be changed by simply playing with the free
parameters �p, �t and the initial velocity of the interface.

In order to get some insight into the failure of this model, we use the dynamic
equation (4.1) in reverse to calculate pV from the measured velocity and acceleration
of the bubble interface. If we assume that the vapour is saturated, we can calculate
the vapour temperature TS(t) from pV (t) by using the approximate relation

pV = pV 0 exp

[
HLatent

Rv

(
1

T0

− 1

TS

)]
(4.2)
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Figure 7. Vapour pressure and temperature versus time for (a, b) the larger tube with
E = 11.6 μJ, and (c, d ) the smaller tube with E = 5.3 μJ. The open symbols are experimental
results, the lines the thermal model predictions. The insert in (a) and (c) shows the vapour
pressure versus time on an enlarged vertical scale.

deduced from the Clausius–Clapeyron equation assuming a constant latent heat
HLatent ; this approximation is legitimate over the limited temperature range of our
experiment. In this equation Rv is the universal gas constant divided by the vapour
mass; we take pV 0 = 105 Pa and T0 = 100◦C.

For D = 50 μm with E =11.6 μJ, the results of these calculations are shown with
open diamonds in figures 7(a) and 7(b). The pressure starts at around 8 atm, which
leads to the huge acceleration of the liquid column. The insert in figure 7(a) is the
vapour pressure versus time on an enlarged vertical scale, which clearly shows that
the pressure decreases with time continuously instead of reaching a constant value.
The corresponding vapour temperature is shown by the open triangles in figure 7(b).
The temperature starts at 170◦C, and decreases continuously with time. A very
surprising result is that at the finial stage the temperature is still ∼60◦C instead of
the undisturbed liquid temperature ∼25◦C. The similar trends of the vapour pressure
and temperature in the smaller tube with E = 5.3 μJ are shown by open symbols in
figures 7(c) and 7(d ).

This analysis shows that the previous model fails because it replaces the actual slow
pressure fall by an abrupt decrease.

4.2. The thermal model

It is interesting to explore to what extent these data can be reproduced by
complementing the mechanical model of (4.1) with a thermal model. For this purpose
we write an energy balance for the vapour in the following form (see, e.g. Yang &
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Prosperetti 2008):

HLatent

d

dt
(ρV X) = k

∂T

∂x

∣∣∣∣
x=X

− ρV csX
dTS

dt
. (4.3)

The left-hand side of this equation is the latent heat associated with the vapour
generation or condensation. The first term on the right-hand side, in which k is the
thermal conductivity of the liquid, is the energy conducted to the vapour space from
the liquid column. The last term, in which cs is the specific heat along the saturation
curve and TS(t) = T (X(t), t) is the temperature at the liquid surface, accounts for
the energy necessary to maintain the vapour at saturation conditions; cs is given by
cs = cpV − HLatent/TS in which the cpV is vapour specific heat (Landau & Lifshitz
1980).

In formulating the energy balance (4.3) we have assumed that the vapour is in
spatially uniform conditions and that it exchanges energy by conduction with the
liquid column but not with the tube wall. We will return to this point later.

The temperature change of the liquid column is controlled by the advection–
diffusion equation

ρLcp

[
∂T

∂t
+ u · ∇T

]
= k∇2T , (4.4)

where cp is the liquid specific heat. The thermal penetration length over the duration
of the entire process is of the order of 5 μm, which is much less than the tube radius.
Furthermore, the initial energy density may be expected to be reasonably uniform
radially over the heated liquid volume and the transverse velocities are very small.
For this reason, the only significant temperature gradient may be expected to be near
the bubble surface so that the equation can be simplified to

ρLcp

[
∂T

∂t
+ u

∂T

∂x

]
= k

∂2T

∂x2
. (4.5)

We change the frame of reference to the moving interface by making the coordinate
transformation ξ = x − X(t); the final form of the equation is then

ρLcp

∂T

∂t
= k

∂2T

∂ξ 2
. (4.6)

This equation must be solved subject to the boundary conditions

T (ξ = 0, t) = TS(t); T (ξ = �L, t) = T∞. (4.7)

In order to solve the liquid diffusion equation we also need to provide the
initial temperature profile along the liquid column. This is a matter of considerable
uncertainty because we do not have sufficient information on the spatial distribution
of the absorbed laser energy. Furthermore, a one-dimensional model cannot capture
the detailed three-dimensional character of the initial temperature distribution. Very
close to the instant of bubble nucleation, we can envisage a small vapour nucleus
surrounded by a hot liquid layer which thins as the vapour expands. By the time the
bubble has grown to occupy the cross-section of the tube and the one-dimensional
approximation becomes applicable, this layer will be adjacent to the bubble surface
on the faces of the two liquid columns which bound it. On this basis, we postulate an
initial temperature distribution given by

T (ξ ) = T∞ + (TS(t0) − T∞) exp[−(ξ/2δ)2], (4.8)
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Figure 8. Calculated X(t) curves for the thermal model with different values of the parameter
δ for the larger tube with the same initial conditions as for E = 11.6 μJ; in descending order δ
is 4.5, 2.9 and 1.5 μm. The middle line with δ = 2.9 μm is the best fit to the experimental data
shown in figure 3 and 6.

where TS(t0) is the initial vapour temperature and δ is the thickness of the thermal
layer surrounding the vapour space. This quantity may be expected to be of the order
of the laser beam width and we will use it as a fitting parameter.

We start the integration attributing to the bubble the measured length and
velocity at the first instant t0 at which the movie record shows an effectively one-
dimensional bubble near the beginning of each experiment. For the larger tube with
E = 11.6 μJ, we take the data recorded t0 = 8 μs after the laser triggering: initial bubble
size X(t0) = 10 μm, initial velocity V (t0) = 0.11 m s−1 and initial vapour temperature
TS(t0) = 170◦C; the initial vapour pressure is calculated from the initial vapour
temperature according to (4.2) and is 8.07 × 105 Pa. Furthermore, �L is 13.5 mm,
p∞ = 105 Pa, T∞ =25◦C. By choosing the parameter δ = 2.9 μm we find the bubble-
length versus time shown by the solid line in figure 6(a). The time dependence of
the bubble size agrees well with experimental data (open circles). The velocity and
acceleration of the interface, shown by the solid lines in figure 4(a), also agree well
with experiment.

The vapour pressure and temperature versus time are shown by the solid lines
in figure 7(a, b). Both predictions are seen to be consistent with the experiment. In
particular, the model captures well the continuous decrease of these quantities. It is
remarkable also that the final bubble temperature, ∼60◦C, is reproduced by the model.

The actual heat exchange between the bubble and its surroundings is a complex
problem for which too little information is available to permit the formulation of
a faithful model. The thermal diffusion length over a time of 100 μs is about 4 μm,
which is comparable with the thickness of the liquid film deposited on the tube wall,
expected to be of the order of micrometres. This liquid layer is probably formed
from the liquid heated by the laser pulse and therefore will have some initial energy
content. It is therefore not clear whether the tube wall, which should be cold as it
will not have absorbed energy from the laser, plays a role in the thermal exchange.
In view of all these uncertainties, the one-dimensional thermal model used before
may perhaps best be seen as a phenomenological model which appears nevertheless
able to capture at least a good part of the relevant physics. The importance of heat
diffusion is brought into evidence by the sensitivity of the model to the value of the
parameter δ. This point is illustrated in figure 8 which shows the bubble length versus
time as obtained with δ = 1.5, 2.9 and 4.5 μm.
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D (μm) E (μJ) X(t0) (μm) V (t0) (m s−1) TS(t0) (◦C) δ (μm)

50 11.6 10.0 0.11 170.0 2.9
10.4 26.7 0.42 134.7 3.1
8.2 21.0 0.11 135.7 3.6
6.5 15.5 0.33 141.3 1.9

24.9 6.1 21.9 0.77 179.4 1.9
5.3 22.5 0.94 172.0 1.8
4.8 16.9 0.67 172.7 2.2
3.8 15.7 0.77 163.2 2.1
3.0 10.1 0.80 151.2 2.4

Table 1. The initial conditions and the respective fitting parameter δ of the thermal model
for different energy levels.

The results of the model for the other cases of figure 3(a) are shown by the
lines in the same figure. The initial conditions used in each case together with the
corresponding value of δ for the larger tube with different energy levels are listed
in table 1. At low laser energy it takes a few frames for the bubble to acquire
a one-dimensional character and therefore t0 is somewhat greater. The parameter
δ does not change too much except for the lowest energy level. The solid lines in
figure 3(a) are the calculated bubble length versus time. A reasonably good agreement
is apparent for each energy level. Only at the lower value of the energy does the model
start to show some noticeable discrepancy with experiment, presumably because the
one-dimensional approximation becomes invalid.

As a typical example for the smaller tube we consider the case with E =5.3 μJ, again
taking as the initial conditions the data: t0 = 8 μs, initial velocity V (t0) = 0.94 m s−1,
initial bubble size X(t0) = 22.5 μm, initial vapour temperature TS(t0) = 172.0◦C and
initial vapour pressure pV (t0) = 8.48 × 105 Pa. Furthermore, �L is 12.5 mm with p∞
and T∞ as before. A reasonable fit to the data is obtained by taking δ = 1.8 μm. The
bubble length versus time calculated from the thermal model is shown by the solid
line in figure 6(b). The bubble size versus time again agrees very well with experiment
(open squares). The velocity and acceleration of the interface are shown by the solid
lines in figure 4(b) and they are both seen to be consistent with experiment. The
vapour pressure and temperature versus time in this case are shown by the solid lines
in figures 7(c) and 7(d ). Although in this case the predictions are not in as good
agreement with experiment as for the larger tube, they are nevertheless consistent
with observation. It is likely that a significant factor in the difference between model
and data is a result of an inaccurate account of viscous effects which play a great
role in the smaller tube.

The performance of the model for the other experiments in figure 3(b) is shown by
the solid lines in the same figure. The initial conditions and the respective values of δ

are listed in table 4.2. The δ-values for different energy levels are quite close, ranging
between 1.8 and 2.4 μm. The comparison between the experiments (open symbols)
and the calculations shows a very good agreement for all energy levels.

4.3. Energy partition

The present model contains both mechanical and thermal aspects and it is interesting
to examine how the energy is apportioned among the different components. Let
us consider the larger tube D = 50 μm with an absorbed energy E = 11.6 μJ. From
figure 4 the maximum velocity is 0.98 m s−1; the corresponding kinetic energy is
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2((1/2)ρLS�LẊ2) � 0.025 μJ, where S = πD2/4 is the tube cross-section and the factor
of 2 accounts for both liquid columns. The instantaneous viscous energy dissipated
is 2RSẊ2�t , and 2RSẊ2 evaluated at the maximum velocity is 576 μJ s−1. No matter
what value of �t is selected, this energy term is negligible. If we take �t = 100 μs,
2RSẊ2�t =0.058 μJ. Both these mechanical energies are much smaller than the laser
energy absorbed by the liquid.

The total latent heat necessary to keep the bubble filled with saturated vapour at the
point of its maximum volume is 2SρV HlatentXmax . At maximum expansion TS = 79◦C,
ρV = 0.29 kg m−3, Xmax = 72 μm so that 2SρV HlatentXmax = 0.18 μJ, which is also much
smaller than the 11.6 μJ absorbed by the liquid. Where is the remainder of the energy?
The answer is that most of the laser energy has gone into heating up the liquid. The
energy required to generate the temperature distribution (4.8) is

2

∫ �L

0

(TS(t0) − T∞) exp[−(ξ/2δ)2]cpρS dξ (4.9)

Evaluating this integral using δ =2.9 μm, TS(t0) = 170◦C, we find ∼11.7 μJ, which is
quite close to the laser energy input.

5. Conclusions
The dynamics of a laser-generated vapour bubble in microtubes with different

diameters has been studied experimentally and theoretically. A pure inertia-driven
model, neglecting thermal effects, failed to capture quantitatively the growth and
collapse of the bubble. A new model was developed by considering heat transfer in
addition to inertia and viscosity. This model has proved to be capable of reproducing
the observed behaviour of the bubble. It is concluded that thermal effects play an
essential role during the whole process of growth and collapse.

We thank J. Sijl, R. Stevens, J. Snoeijer and C. D. Ohl for stimulating discussions,
this work was supported by STW, VIDI & NWO. AP expresses his appreciation to Mr
Ran Yaron of ART (Boulder CO) who stimulated some ideas contributed to this work.
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